
GreenLearning Documentation
Release 1.0.0

Nicolas Boulle

May 04, 2021

CONTENTS

1 Features 3

2 Guide 5
2.1 Installation . 5
2.2 Guide . 6
2.3 Gallery of examples . 12
2.4 Citation . 35

3 Code Documentation 37
3.1 greenlearning . 37

Python Module Index 45

Index 47

i

ii

GreenLearning Documentation, Release 1.0.0

GreenLearning is a deep learning library based on Tensorflow for learning Green’s functions associated with partial
differential operators.

Exact and learned Green’s function of the Laplace operator.

The library is maintained by Nicolas Boullé. If you are interested in using it, do not hesitate to get in contact at
boulle@maths.ox.ac.uk.

CONTENTS 1

https://en.wikipedia.org/wiki/Green%27s_function
https://en.wikipedia.org/wiki/Differential_operator
https://en.wikipedia.org/wiki/Differential_operator
https://people.maths.ox.ac.uk/boulle/

GreenLearning Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

FEATURES

• GreenLearning learns Green’s functions and homogeneous solutions associated with scalar and systems of lin-
earized partial differential equations in 1D and 2D with deep learning.

• Rational neural networks are implemented and used to increase the accuracy of the learned Green’s functions.

• GreenLearning requires no hyperparameter tuning to successfully learn Green’s functions.

• The neural networks can be created and trained easily with a few lines of code.

• It is simple to generate the training datasets with MATLAB scripts.

3

https://proceedings.neurips.cc/paper/2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf

GreenLearning Documentation, Release 1.0.0

4 Chapter 1. Features

CHAPTER

TWO

GUIDE

See the following sections to learn how to install and use the GreenLearning library.

2.1 Installation

2.1.1 Requirements

GreenLearning relies on the following Python libraries:

• TensorFlow>=1.15.0

• Matplotlib

• NumPy

• SciPy

2.1.2 How to install GreenLearning

• For users, you can install the stable version with pip:

pip install greenlearning

or with conda:

conda install -c conda-forge greenlearning

• For developers, you should clone the GitHub repository and install it manually on your machine:

git clone https://github.com/NBoulle/greenlearning.git
cd greenlearning
pip install -e.

5

https://www.tensorflow.org/
https://matplotlib.org/
http://www.numpy.org/
https://www.scipy.org/

GreenLearning Documentation, Release 1.0.0

2.2 Guide

2.2.1 Creating a training dataset

In this section, we explain how to generate a training dataset in MATLAB to learn the Green’s function associated to
an ODE or a system of ODEs.

This step requires the MATLAB package called Chebfun (see https://www.chebfun.org/download/ for installation
instructions).

Definition of the differential operator

The definition of the differential operator can be done by creating a MATLAB script in a folder examples/. In the
following example, we add a script called helmholtz.m in the folder with the following content:

function output_example = helmholtz()
% Helmholtz equation

% Define the domain.
dom = [0,1];

% Parameter of the equation
K = 15;

% Differential operator
N = chebop(@(x,u) diff(u,2)+K^2*u, dom);

% Boundary conditions
N.bc = @(x,u) [u(dom(1)); u(dom(2))];

% Output
output_example = {N};
end

Here, we define a Helmholtz operator ℒ𝑢 = 𝑑2𝑢
𝑑𝑥2 + 𝐾2𝑢 with Helmholtz frequency 𝐾 = 15, on the interval [0, 1],

with homogeneous Dirichlet boundary conditions.

• One could, for instance, define the boundary conditions to be 𝑢(0) = −1, 𝑢(1) = 2 as follows:

% Boundary conditions
N.bc = @(x,u) [u(dom(1))+1; u(dom(2))-2];

• It is also possible to impose 𝑢(0) = 0, 𝑢′(0) = 1 with the following line:

% Boundary conditions
N.bc = @(x,u) [u(dom(1)); feval(diff(u),dom(1))-1];

If the exact Green’s function is known, one can in addition provide its expression (as a string in numpy format) to
compare with the learned Green’s function:

% Exact Green's function
G = sprintf('(%d*np.sin(%d))**(-1)*np.sin(%d*x)*np.sin(%d*(y-1))*(x<=y)+(%d*np.sin(
→˓%d))**(-1)*np.sin(%d*y)*np.sin(%d*(x-1))*(x>y)',K,K,K,K,K,K,K,K);

% Output
output_example = {N, "ExactGreen", G};

6 Chapter 2. Guide

https://www.chebfun.org/download/

GreenLearning Documentation, Release 1.0.0

System of differential operators

The syntax is similar to define a system of differential operators. In this example, we define the following system:

ℒ(𝑢, 𝑣) =

(︃
𝑑2𝑢
𝑑𝑥2 − 𝑣

− 𝑑2𝑣
𝑑𝑥2 + 𝑥𝑢

)︃
,

on the domain [−1, 1] with boundary conditions:

𝑢(−1) = 1, 𝑢(1) = −1, 𝑣(−1) = 𝑣(1) = −2.

function output_example = ODE_system()
% System of ODEs

% Define the domain.
dom = [-1, 1];

% Differential operator
N = chebop(@(x,u,v) [diff(u,2)-v; -diff(v,2)+x.*u], dom);

% Boundary conditions
N.bc = @(x,u, v) [u(-1)-1; u(1)+1; v(-1)+2; v(1)+2];

% Output
output_example = {N};
end

Generating the dataset

Make sure that the MATLAB codes generate_gl_example.m and generate_gl_datasets.m are present in the parent
directory of examples/ and run the following command in a MATLAB terminal:

generate_gl_example("helmholtz");

Alternatively, all the datasets corresponding to the examples in the folder examples/ can be generated as follows:

generate_gl_datasets();

The datasets are saved as .mat files at the location examples/datasets/.

• By default, the code generates 100 sampled functions 𝑓 from a squared-exponential Gaussian process, and solve
the equation ℒ𝑢 = 𝑓 for the different forcing terms to obtain the training solutions 𝑢. Then, the forcing terms
are evaluated at 200 uniform points in the domain Ω, while the solutions are evaluated at 100 points.

• It is possible to edit the MATLAB script generate_gl_example.m to add noise to the output functions, or change
the different parameters such as number of forcing terms, spatial points, . . .

2.2. Guide 7

https://github.com/NBoulle/greenlearning/blob/main/generate_gl_example.m
https://github.com/NBoulle/greenlearning/blob/main/generate_gl_datasets.m
https://github.com/NBoulle/greenlearning/blob/main/generate_gl_example.m

GreenLearning Documentation, Release 1.0.0

2.2.2 Example 1: Helmholtz operator

After generating the training dataset examples/datasets/helmholtz.m corresponding to the helmholtz oper-
ator, we now try to discover its Green’s function 𝐺 and associated homogeneous solution 𝑢hom such that

ℒ𝑢 = 𝑓 ⇐⇒ 𝑢(𝑥) =

∫︁
Ω

𝐺(𝑥, 𝑦)𝑓(𝑦)d𝑦 + 𝑢hom(𝑥), ∀𝑥 ∈ Ω,

where 𝑢hom is the solution to the homogeneous equation ℒ𝑢 = 0 satisfying the boundary conditions.

In this example, the prescribed boundary conditions are homogeneous Dirichlet on the interval Ω = [0, 1] and therefore
𝑢hom = 0.

Training the neural networks

The neural networks can be implemented and trained by running the following Python script:

1 # Import the library
2 import greenlearning as gl
3

4 # Construct neural networks for G and homogeneous solution
5 G_network = gl.matrix_networks([2] + [50] * 4 + [1], "rational", (1,1))
6 U_hom_network = gl.matrix_networks([1] + [50] * 4 + [1], "rational", (1,))
7

8 # Define the model
9 model = gl.Model(G_network, U_hom_network)

10

11 # Train the model on the dataset "helmholtz" in the path "examples/datasets/"
12 model.train("examples/datasets/","helmholtz")
13

14 # Save the training loss
15 model.save_loss()
16

17 # Plot the results
18 model.plot_results()
19

20 # Save the NNs evaluated at a grid in a csv file
21 model.save_results()
22

23 # Close the TensorFlow session
24 model.sess.close()

We then create one neural network for the Green’s function: G_network, which accepts two inputs (𝑥, 𝑦) and returns
one output: 𝐺(𝑥, 𝑦). This network has 4 hidden layers of 50 neurons each and uses rational activation functions (see
the paper about rational neural networks for more details).

The last parameter of matrix_networks is the shape (n_output, n_input) corresponding to the dimension
of the problem, where n_input is the number of input forcing terms 𝑓 to the system and n_output is the number
of solutions 𝑢. In this example, there is only one input and one output (as it is a scalar ODE) so we set the shape to
(1,1).

The shape of the homogeneous solution network must be equal to the number of output functions 𝑢: (n_output,).

By default, the networks are trained using first 1000 steps of Adam’s optimizer and then up to 5 × 104 steps of
L-BFGS-B optimizer.

8 Chapter 2. Guide

https://proceedings.neurips.cc/paper/2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf

GreenLearning Documentation, Release 1.0.0

Visualizing the Green’s function

The line

model.plot_results()

displays the learned Green’s function (top-right panel), the training solutions 𝑢 used (bottom-left), and the learned
homogeneous solution (bottom-right) in the file results/helmholtz_rational.pdf.

Exact and learned Green’s function of the Helmholtz operator using a rational neural network.

• Using rational neural networks for both the Green’s function and homogeneous solution, we achieve a relative
error between the exact and learned Green’s function of 0.9%. The relative error is defined as

Relative error =
‖𝐺exact −𝐺learned‖𝐿2(Ω)

‖𝐺exact‖𝐿2(Ω)

• The values of the loss function during the training process are saved in the following file: training/
loss_rational.csv.

2.2. Guide 9

GreenLearning Documentation, Release 1.0.0

ReLu vs Rational neural network

We can also specify a different activation function, (e.g. ReLU) for the neural networks easily as

Construct neural networks for G and homogeneous solution
G_network = gl.matrix_networks([2] + [50] * 4 + [1], "relu", (1,1))
U_hom_network = gl.matrix_networks([1] + [50] * 4 + [1], "relu", (1,))

and we obtain the following figure.

Exact and learned Green’s function of the Helmholtz operator using a ReLU neural network.

Here, the relative error reaches 5.3%, which is significantly larger than the one obtained with rational neural networks.
In addition, the Green’s function and homogeneous solution learned with ReLU networks are not necessarily smooth
as shown by the figure above.

2.2.3 Example 2: System of ODEs

In this example, we learn a matrix 𝐺 of Green’s functions and homogeneous solutions (𝑢hom, 𝑣hom) associated to the
system of differential operators:

ℒ(𝑢, 𝑣) =

(︃
𝑑2𝑢
𝑑𝑥2 − 𝑣

− 𝑑2𝑣
𝑑𝑥2 + 𝑥𝑢

)︃
,

on the domain [−1, 1] with boundary conditions:

𝑢(−1) = 1, 𝑢(1) = −1, 𝑣(−1) = 𝑣(1) = −2.

10 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

Hence, if 𝑓1 and 𝑓2 are two forcing terms, then the solution (𝑢, 𝑣) to the equations

𝑑2𝑢

𝑑𝑥2
− 𝑣 = 𝑓1, (2.1)

−𝑑2𝑣

𝑑𝑥2
+ 𝑥𝑢 = 𝑓2,(2.2)

satisfies (︂
𝑢(𝑥)
𝑣(𝑥)

)︂
=

∫︁
[−1,1]

(︂
𝐺0,0(𝑥, 𝑦) 𝐺0,1(𝑥, 𝑦)
𝐺1,0(𝑥, 𝑦) 𝐺1,1(𝑥, 𝑦)

)︂(︂
𝑓1(𝑦)
𝑓2(𝑦)

)︂
d𝑦 +

(︂
𝑢hom(𝑥)
𝑣hom(𝑥)

)︂
,

for all 𝑥 ∈ [−1, 1]. Note that we have employed the Python indexing notation for matrices. Moreover, the homoge-
neous solutions satisfy the following equations:

Implementation

We implement this example in GreenLearning by running the following Python script:

1 # Import the library
2 import greenlearning as gl
3

4 # Construct neural networks for G and homogeneous solution
5 G_network = gl.matrix_networks([2] + [50] * 4 + [1], "rational", (2,2))
6 U_hom_network = gl.matrix_networks([1] + [50] * 4 + [1], "rational", (2,))
7

8 # Define the model
9 model = gl.Model(G_network, U_hom_network)

10

11 # Train the model on the dataset "ODE_system" in the path "examples/datasets/"
12 model.train("examples/datasets/","ODE_system")
13

14 # Plot the results
15 model.plot_results()
16

17 # Close the Tensorflow session
18 model.sess.close()

In particular, we defined the shape of the matrix of neural networks G_network to be (2,2) because there are two
input functions (𝑓1, 𝑓2), and two outputs (𝑢, 𝑣). Similarly, the homogeneous solution network U_hom_network has
shape (2,) to match the number of outputs.

Numerical results

In the script written above, we used the following command to plot the Green’s function and save the results:

Plot the results
model.plot_results()

Note that this command differs to the case of scalar operator (i.e. one input and output function) as it displays the
matrix of Green’s functions and the two homogeneous solutions.

2.2. Guide 11

GreenLearning Documentation, Release 1.0.0

Matrix of Green’s functions together with homogeneous solutions learned by a rational neural network.

In this figure, we recognize the diagonal blocks of the matrix of Green’s functions, which correspond to the Laplacian
and negative Laplacian operator. We also see on the right panel that the homogeneous solutions to the system of ODEs
are learned by the rational neural networks with high accuracy.

2.3 Gallery of examples

In this section, we display the Green’s functions of the examples located in examples/ learned by GreenLearning.
Each title is a link to the corresponding MATLAB script.

12 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.1 advection_diffusion

2.3. Gallery of examples 13

GreenLearning Documentation, Release 1.0.0

2.3.2 advection_diffusion_jump

14 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.3 airy_equation

2.3. Gallery of examples 15

GreenLearning Documentation, Release 1.0.0

2.3.4 biharmonic

16 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.5 boundary_layer

2.3. Gallery of examples 17

GreenLearning Documentation, Release 1.0.0

2.3.6 cubic_helmholtz

18 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.7 cusp

2.3. Gallery of examples 19

GreenLearning Documentation, Release 1.0.0

2.3.8 dawson

20 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.9 helmholtz

2.3. Gallery of examples 21

GreenLearning Documentation, Release 1.0.0

2.3.10 identity

22 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.11 interior_layer

2.3. Gallery of examples 23

GreenLearning Documentation, Release 1.0.0

2.3.12 jump_green

24 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.13 laplace

2.3. Gallery of examples 25

GreenLearning Documentation, Release 1.0.0

2.3.14 mean_condition

26 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.15 negative_helmholtz

2.3. Gallery of examples 27

GreenLearning Documentation, Release 1.0.0

2.3.16 nonlinear_biharmonic

28 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.17 nonlinear_SL

2.3. Gallery of examples 29

GreenLearning Documentation, Release 1.0.0

2.3.18 periodic_helmholtz

30 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.19 potential_barrier

2.3. Gallery of examples 31

GreenLearning Documentation, Release 1.0.0

2.3.20 schrodinger

32 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.21 third_order

2.3. Gallery of examples 33

GreenLearning Documentation, Release 1.0.0

2.3.22 variable_coeffs

34 Chapter 2. Guide

GreenLearning Documentation, Release 1.0.0

2.3.23 viscous_shock

2.4 Citation

Please cite the following papers if you are using GreenLearning.

• About GreenLearning:

@article{boulle2021mechanistic,
title={Mechanistic understanding with Greens functions and deep learning},
author={Boull{\'e}, Nicolas and Earl, Christopher J. and Townsend, Alex,
journal={arXiv preprint arXiv:},
year={2021}

}

• About Rational neural networks:

@inproceedings{boulle2020rational,
title={Rational neural networks},
author={Boull{\'e}, Nicolas and Nakatsukasa, Yuji and Townsend, Alex},
booktitle = {Advances in Neural Information Processing Systems},
volume = {33},
pages = {14243--14253},
year={2020},

(continues on next page)

2.4. Citation 35

GreenLearning Documentation, Release 1.0.0

(continued from previous page)

url = {https://proceedings.neurips.cc/paper/2020/file/
→˓a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf}
}

36 Chapter 2. Guide

CHAPTER

THREE

CODE DOCUMENTATION

This section contains the documentation of the classes and functions in the package.

3.1 greenlearning

3.1.1 greenlearning package

class greenlearning.Model(G_network, U_hom_network)
Bases: object

Create a model to learn Green’s function from input-output data with deep learning.

Example:

Construct neural networks for G and homogeneous solution
G_network = gl.matrix_networks([2] + [50] * 4 + [1], "rational", (2,2))
U_hom_network = gl.matrix_networks([1] + [50] * 4 + [1], "rational", (2,))

Define the model
model = gl.Model(G_network, U_hom_network)

Train the model on the selected dataset in the path "examples/datasets/"
model.train("examples/datasets/", "ODE_system")

Plot the results
model.plot_results()

Close the session
model.sess.close()

callback(loss)
“Callback for optimizers: save the current value of the loss function.

init_optimizer()
Initialize the variables and optimizers.

plot_results()
Plot the learned Green’s function and homogeneous solution.

print_weights()
Print all the trainable weights.

save_loss()
Save the loss function in a file after training.

37

GreenLearning Documentation, Release 1.0.0

save_results()
Save the Green’s function evaluated at a grid in a csv file.

train(example_path, example_name)
Train the Green’s function and homogeneous solution networks.

class greenlearning.NeuralNetwork(layers, activation_name)
Bases: object

Create a fully connected neural network with given number of layers and activation function.

Example:

gl.NeuralNetwork([2] + [50] * 4 + [1], "rational")

creates a rational neural network with 4 hidden layers of 50 neurons.

evaluate(X)
Evaluate the neural network at the array X.

initialize_NN()
Initialize the weights of the neural network.

xavier_init(size)
Initializer for weights and biases.

greenlearning.matrix_networks(layers, activation, shape)
Create a matrix of neural networks with the given parameters.

Example:

gl.matrix_networks([2] + [50] * 4 + [1], "rational", (2,1))

creates a matrix size 2 x 1 of rational networks with 4 hidden layers of 50 neurons.

Subpackages

greenlearning.utils package

Submodules

greenlearning.utils.backend module

Source: https://github.com/lululxvi/deepxde/blob/master/deepxde/backend.py

greenlearning.utils.backend.backend()
Returns the name and version of the current backend, e.g., (“tensorflow”, 1.14.0).

Returns A tuple of the name and version of the backend GreenLearning is currently using.

Return type tuple

Example:

gl.utils.backend.backend()
>>> ("tensorflow", 1.15.0)

greenlearning.utils.backend.is_tf_1()
Check the version of Tensorflow.

38 Chapter 3. Code Documentation

https://github.com/lululxvi/deepxde/blob/master/deepxde/backend.py

GreenLearning Documentation, Release 1.0.0

greenlearning.utils.config module

greenlearning.utils.external_optimizer module

TensorFlow interface for third-party optimizers.

Code below is taken from https://github.com/tensorflow/tensorflow/blob/v1.15.2/tensorflow/contrib/opt/python/
training/external_optimizer.py, because the tf.contrib module is not included in TensorFlow 2.

Another solution is using TensorFlow Probability, see the following references. But the following solution requires
setting the weights before building the network and loss, which is not consistent with other optimizers in graph mode.
A possible solution Could be adding a TFPOptimizerInterface similar to ScipyOptimizerInterface.

• https://www.tensorflow.org/probability/api_docs/python/tfp/optimizer/lbfgs_minimize

• https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/optimizer/lbfgs_test.py

• https://stackoverflow.com/questions/58591562/how-can-we-use-lbfgs-minimize-in-tensorflow-2-0

• https://stackoverflow.com/questions/59029854/use-scipy-optimizer-with-tensorflow-2-0-for-neural-network-training

• https://pychao.com/2019/11/02/optimize-tensorflow-keras-models-with-l-bfgs-from-tensorflow-probability/

• https://gist.github.com/piyueh/712ec7d4540489aad2dcfb80f9a54993

• https://github.com/pierremtb/PINNs-TF2.0/blob/master/utils/neuralnetwork.py

class greenlearning.utils.external_optimizer.ExternalOptimizerInterface(loss,
var_list=None,
equal-
i-
ties=None,
in-
equal-
i-
ties=None,
var_to_bounds=None,
**op-
ti-
mizer_kwargs)

Bases: object

Base class for interfaces with external optimization algorithms. Subclass this and implement _minimize in order
to wrap a new optimization algorithm. ExternalOptimizerInterface should not be instantiated directly; instead
use e.g. ScipyOptimizerInterface. @@__init__ @@minimize

minimize(session=None, feed_dict=None, fetches=None, step_callback=None, loss_callback=None,
**run_kwargs)

Minimize a scalar Tensor. Variables subject to optimization are updated in-place at the end of optimization.
Note that this method does not just return a minimization Op, unlike Optimizer.minimize(); instead it
actually performs minimization by executing commands to control a Session.

Parameters

• session – A Session instance.

• feed_dict – A feed dict to be passed to calls to session.run.

• fetches – A list of Tensor`s to fetch and supply to `loss_callback as positional argu-
ments.

3.1. greenlearning 39

https://github.com/tensorflow/tensorflow/blob/v1.15.2/tensorflow/contrib/opt/python/training/external_optimizer.py
https://github.com/tensorflow/tensorflow/blob/v1.15.2/tensorflow/contrib/opt/python/training/external_optimizer.py
https://www.tensorflow.org/probability/api_docs/python/tfp/optimizer/lbfgs_minimize
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/optimizer/lbfgs_test.py
https://stackoverflow.com/questions/58591562/how-can-we-use-lbfgs-minimize-in-tensorflow-2-0
https://stackoverflow.com/questions/59029854/use-scipy-optimizer-with-tensorflow-2-0-for-neural-network-training
https://pychao.com/2019/11/02/optimize-tensorflow-keras-models-with-l-bfgs-from-tensorflow-probability/
https://gist.github.com/piyueh/712ec7d4540489aad2dcfb80f9a54993
https://github.com/pierremtb/PINNs-TF2.0/blob/master/utils/neuralnetwork.py

GreenLearning Documentation, Release 1.0.0

• step_callback – A function to be called at each optimization step; arguments are the
current values of all optimization variables flattened into a single vector.

• loss_callback – A function to be called every time the loss and gradients are com-
puted, with evaluated fetches supplied as positional arguments.

• **run_kwargs – kwargs to pass to session.run.

class greenlearning.utils.external_optimizer.ScipyOptimizerInterface(loss,
var_list=None,
equali-
ties=None,
in-
equali-
ties=None,
var_to_bounds=None,
**opti-
mizer_kwargs)

Bases: greenlearning.utils.external_optimizer.ExternalOptimizerInterface

Wrapper allowing scipy.optimize.minimize to operate a tf.compat.v1.Session.

Example:

vector = tf.Variable([7., 7.], 'vector')
Make vector norm as small as possible.
loss = tf.reduce_sum(tf.square(vector))
optimizer = ScipyOptimizerInterface(loss, options={'maxiter': 100})
with tf.compat.v1.Session() as session:

optimizer.minimize(session)
The value of vector should now be [0., 0.].

Example with simple bound constraints:

vector = tf.Variable([7., 7.], 'vector')
Make vector norm as small as possible.
loss = tf.reduce_sum(tf.square(vector))
optimizer = ScipyOptimizerInterface(loss, var_to_bounds={vector: ([1, 2], np.
→˓infty)})
with tf.compat.v1.Session() as session:

optimizer.minimize(session)
The value of vector should now be [1., 2.].

Example with more complicated constraints:

vector = tf.Variable([7., 7.], 'vector')
Make vector norm as small as possible.
loss = tf.reduce_sum(tf.square(vector))
Ensure the vector's y component is = 1.
equalities = [vector[1] - 1.]
Ensure the vector's x component is >= 1.
inequalities = [vector[0] - 1.]
Our default SciPy optimization algorithm, L-BFGS-B, does not support
general constraints. Thus we use SLSQP instead.
optimizer = ScipyOptimizerInterface(loss, equalities=equalities,
→˓inequalities=inequalities, method='SLSQP')
with tf.compat.v1.Session() as session:

optimizer.minimize(session)
The value of vector should now be [1., 1.].

40 Chapter 3. Code Documentation

GreenLearning Documentation, Release 1.0.0

greenlearning.utils.load_data module

greenlearning.utils.load_data.load_data(model, example_path, example_name)
Load the training dataset.

greenlearning.utils.plotting module

class greenlearning.utils.plotting.MathTextSciFormatter(fmt='%1.2e')
Bases: matplotlib.ticker.Formatter

Format the axis of the figure.

greenlearning.utils.plotting.figsize(scale, nplots=1)
Define the figure size.

greenlearning.utils.plotting.newfig(width, nplots=1)
Create a new figure.

greenlearning.utils.plotting.savefig(filename, crop=True)
Save the figure as a pdf file.

greenlearning.utils.print_weights module

greenlearning.utils.print_weights.print_weights(model)
Print all the trainable weights.

greenlearning.utils.real module

Source: https://github.com/lululxvi/deepxde/blob/master/deepxde/real.py

class greenlearning.utils.real.Real(precision)
Bases: object

Set the float precision in numpy and Tensorflow.

set_float32()

set_float64()

set_precision(precision)

greenlearning.utils.save_results module

greenlearning.utils.save_results.save_results(model, Green_slice=1)
Save the Green’s function evaluated at a grid in a csv file. If the spatial dimension is equal to 2, Green_slice
indicates the slice to save the Green’s function’

3.1. greenlearning 41

https://github.com/lululxvi/deepxde/blob/master/deepxde/real.py

GreenLearning Documentation, Release 1.0.0

greenlearning.utils.tf_session module

greenlearning.utils.tf_session.open_tf_session()
Open a Tensorflow session.

greenlearning.utils.visualization module

greenlearning.utils.visualization.input_data_slice(model, Green_slice=1)
Return evaluation points for the selected slice of the Green’s function. Green_slice=1 : G(:,:,y1,y2), where y1,
y2 are points in the middle of the domain. Green_slice=2 : G(:,x2,:,y2). Green_slice=3 : G(x1,x2,:,:), where
x1, x2 are points in the middle of the domain. Green_slice=4 : G(x1,:,y1,:).

greenlearning.utils.visualization.plot_1d_results(model)
Plot the learned Green’s function and homogeneous solution in 1D.

greenlearning.utils.visualization.plot_1d_systems(model)
Plot the learned Green’s functions and homogeneous solutions for a system of PDEs in 1D.

greenlearning.utils.visualization.plot_2d_results(model)
Plot the learned Green’s function and homogeneous solution in 2D.

greenlearning.utils.visualization.plot_2d_systems(model, Green_slice=1)
Plot the learned Green’s functions and homogeneous solutions of a system of PDEs in 2D.

greenlearning.utils.visualization.plot_results(model)
Plot the learned Green’s function and homogeneous solution in a pdf.

Submodules

greenlearning.activations module

greenlearning.activations.get(identifier, weights)
Return the activation function.

greenlearning.activations.initialize_weights(identifier)
Initialize the weights of the activation functions.

greenlearning.activations.rational(x, weights)
Define the rational activation function.

greenlearning.loss_function module

class greenlearning.loss_function.loss_function(G, N)
Bases: object

Loss function for learning Green’s functions and homogeneous solutions.

Inputs: matrices of neural networks G and N.

build()
Create Tensorflow placeholders and build the loss function.

feed_dict(inputs_xU, inputs_xF, inputs_f, inputs_u, weights_x, weights_y)
Construct a feed_dict to feed values to TensorFlow placeholders.

property outputs

42 Chapter 3. Code Documentation

GreenLearning Documentation, Release 1.0.0

greenlearning.matrix_networks module

greenlearning.matrix_networks.matrix_networks(layers, activation, shape)
Create a matrix of neural networks with the given parameters.

Example:

gl.matrix_networks([2] + [50] * 4 + [1], "rational", (2,1))

creates a matrix size 2 x 1 of rational networks with 4 hidden layers of 50 neurons.

greenlearning.model module

class greenlearning.model.Model(G_network, U_hom_network)
Bases: object

Create a model to learn Green’s function from input-output data with deep learning.

Example:

Construct neural networks for G and homogeneous solution
G_network = gl.matrix_networks([2] + [50] * 4 + [1], "rational", (2,2))
U_hom_network = gl.matrix_networks([1] + [50] * 4 + [1], "rational", (2,))

Define the model
model = gl.Model(G_network, U_hom_network)

Train the model on the selected dataset in the path "examples/datasets/"
model.train("examples/datasets/", "ODE_system")

Plot the results
model.plot_results()

Close the session
model.sess.close()

callback(loss)
“Callback for optimizers: save the current value of the loss function.

init_optimizer()
Initialize the variables and optimizers.

plot_results()
Plot the learned Green’s function and homogeneous solution.

print_weights()
Print all the trainable weights.

save_loss()
Save the loss function in a file after training.

save_results()
Save the Green’s function evaluated at a grid in a csv file.

train(example_path, example_name)
Train the Green’s function and homogeneous solution networks.

3.1. greenlearning 43

GreenLearning Documentation, Release 1.0.0

greenlearning.neural_network module

class greenlearning.neural_network.NeuralNetwork(layers, activation_name)
Bases: object

Create a fully connected neural network with given number of layers and activation function.

Example:

gl.NeuralNetwork([2] + [50] * 4 + [1], "rational")

creates a rational neural network with 4 hidden layers of 50 neurons.

evaluate(X)
Evaluate the neural network at the array X.

initialize_NN()
Initialize the weights of the neural network.

xavier_init(size)
Initializer for weights and biases.

greenlearning.quadrature_weights module

greenlearning.quadrature_weights.get_weights(identifier, x)
Get the type of quadrature weights associated to the numpy array x.

greenlearning.quadrature_weights.trapezoidal(x)
Trapezoidal weights for trapezoidal rule integration.

greenlearning.quadrature_weights.uniform(x)
Uniform weights for Monte-Carlo integration.

44 Chapter 3. Code Documentation

PYTHON MODULE INDEX

g
greenlearning, 37
greenlearning.activations, 42
greenlearning.loss_function, 42
greenlearning.matrix_networks, 43
greenlearning.model, 43
greenlearning.neural_network, 44
greenlearning.quadrature_weights, 44
greenlearning.utils, 38
greenlearning.utils.backend, 38
greenlearning.utils.config, 39
greenlearning.utils.external_optimizer,

39
greenlearning.utils.load_data, 41
greenlearning.utils.plotting, 41
greenlearning.utils.print_weights, 41
greenlearning.utils.real, 41
greenlearning.utils.save_results, 41
greenlearning.utils.tf_session, 42
greenlearning.utils.visualization, 42

45

GreenLearning Documentation, Release 1.0.0

46 Python Module Index

INDEX

B
backend() (in module greenlearning.utils.backend), 38
build() (greenlearning.loss_function.loss_function

method), 42

C
callback() (greenlearning.Model method), 37
callback() (greenlearning.model.Model method), 43

E
evaluate() (greenlearn-

ing.neural_network.NeuralNetwork method),
44

evaluate() (greenlearning.NeuralNetwork method),
38

ExternalOptimizerInterface (class in green-
learning.utils.external_optimizer), 39

F
feed_dict() (greenlearn-

ing.loss_function.loss_function method),
42

figsize() (in module greenlearning.utils.plotting), 41

G
get() (in module greenlearning.activations), 42
get_weights() (in module greenlearn-

ing.quadrature_weights), 44
greenlearning

module, 37
greenlearning.activations

module, 42
greenlearning.loss_function

module, 42
greenlearning.matrix_networks

module, 43
greenlearning.model

module, 43
greenlearning.neural_network

module, 44
greenlearning.quadrature_weights

module, 44
greenlearning.utils

module, 38
greenlearning.utils.backend

module, 38
greenlearning.utils.config

module, 39
greenlearning.utils.external_optimizer

module, 39
greenlearning.utils.load_data

module, 41
greenlearning.utils.plotting

module, 41
greenlearning.utils.print_weights

module, 41
greenlearning.utils.real

module, 41
greenlearning.utils.save_results

module, 41
greenlearning.utils.tf_session

module, 42
greenlearning.utils.visualization

module, 42

I
init_optimizer() (greenlearning.Model method),

37
init_optimizer() (greenlearning.model.Model

method), 43
initialize_NN() (greenlearn-

ing.neural_network.NeuralNetwork method),
44

initialize_NN() (greenlearning.NeuralNetwork
method), 38

initialize_weights() (in module greenlearn-
ing.activations), 42

input_data_slice() (in module greenlearn-
ing.utils.visualization), 42

is_tf_1() (in module greenlearning.utils.backend), 38

L
load_data() (in module greenlearn-

47

GreenLearning Documentation, Release 1.0.0

ing.utils.load_data), 41
loss_function (class in greenlearn-

ing.loss_function), 42

M
MathTextSciFormatter (class in greenlearn-

ing.utils.plotting), 41
matrix_networks() (in module greenlearning), 38
matrix_networks() (in module greenlearn-

ing.matrix_networks), 43
minimize() (greenlearn-

ing.utils.external_optimizer.ExternalOptimizerInterface
method), 39

Model (class in greenlearning), 37
Model (class in greenlearning.model), 43
module

greenlearning, 37
greenlearning.activations, 42
greenlearning.loss_function, 42
greenlearning.matrix_networks, 43
greenlearning.model, 43
greenlearning.neural_network, 44
greenlearning.quadrature_weights, 44
greenlearning.utils, 38
greenlearning.utils.backend, 38
greenlearning.utils.config, 39
greenlearning.utils.external_optimizer,

39
greenlearning.utils.load_data, 41
greenlearning.utils.plotting, 41
greenlearning.utils.print_weights,

41
greenlearning.utils.real, 41
greenlearning.utils.save_results, 41
greenlearning.utils.tf_session, 42
greenlearning.utils.visualization,

42

N
NeuralNetwork (class in greenlearning), 38
NeuralNetwork (class in greenlearn-

ing.neural_network), 44
newfig() (in module greenlearning.utils.plotting), 41

O
open_tf_session() (in module greenlearn-

ing.utils.tf_session), 42
outputs() (greenlearning.loss_function.loss_function

property), 42

P
plot_1d_results() (in module greenlearn-

ing.utils.visualization), 42

plot_1d_systems() (in module greenlearn-
ing.utils.visualization), 42

plot_2d_results() (in module greenlearn-
ing.utils.visualization), 42

plot_2d_systems() (in module greenlearn-
ing.utils.visualization), 42

plot_results() (greenlearning.Model method), 37
plot_results() (greenlearning.model.Model

method), 43
plot_results() (in module greenlearn-

ing.utils.visualization), 42
print_weights() (greenlearning.Model method), 37
print_weights() (greenlearning.model.Model

method), 43
print_weights() (in module greenlearn-

ing.utils.print_weights), 41

R
rational() (in module greenlearning.activations), 42
Real (class in greenlearning.utils.real), 41

S
save_loss() (greenlearning.Model method), 37
save_loss() (greenlearning.model.Model method),

43
save_results() (greenlearning.Model method), 37
save_results() (greenlearning.model.Model

method), 43
save_results() (in module greenlearn-

ing.utils.save_results), 41
savefig() (in module greenlearning.utils.plotting), 41
ScipyOptimizerInterface (class in greenlearn-

ing.utils.external_optimizer), 40
set_float32() (greenlearning.utils.real.Real

method), 41
set_float64() (greenlearning.utils.real.Real

method), 41
set_precision() (greenlearning.utils.real.Real

method), 41

T
train() (greenlearning.Model method), 38
train() (greenlearning.model.Model method), 43
trapezoidal() (in module greenlearn-

ing.quadrature_weights), 44

U
uniform() (in module greenlearn-

ing.quadrature_weights), 44

X
xavier_init() (greenlearn-

ing.neural_network.NeuralNetwork method),
44

48 Index

GreenLearning Documentation, Release 1.0.0

xavier_init() (greenlearning.NeuralNetwork
method), 38

Index 49

	Features
	Guide
	Installation
	Guide
	Gallery of examples
	Citation

	Code Documentation
	greenlearning

	Python Module Index
	Index

